Funktionsanalyse

Funktionsvorschrift: $f(x) = \frac{x^3}{8} + x^2 - 4x$

Ableitungen:

1. Ableitung:
$$f'(x) = \frac{3x^2}{8} + 2x - 4$$

2. Ableitung:
$$f''(x) = \frac{3x}{4} + 2$$

3. Ableitung:
$$f'''(x) = \frac{3}{4}$$

Nullstellen:

$$x = -10,92 \land x = 2,92 \land x = 0,0$$

Extrema:

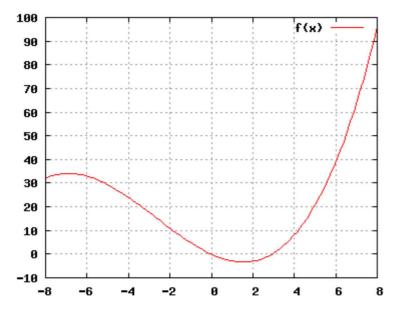
Stelle (x)	Notw. Kriterium	Hinr. Kriterium	Extrempunkt
x = -6,88	f'(-6,88) = 0	f''(-6,88) = -3,16	HP(-6,88 34,14)
x = 1,54	f'(1,54) = 0	f''(1,54) = 3,16	TP(1,54 -3,33)

Wendepunkte:

Stelle (x)	Notw. Kriterium	Hinr. Kriterium	Wendepunkt
x = -2,66	f''(-2,66) = 0	f'''(-2,66) = 0,75	$W(-2,66 \mid 15,40) (R \rightarrow L)$

Grenzverhalten:

$$\lim_{x \to -\infty} f(x) = -\infty$$


$$\lim_{x \to \infty} f(x) = +\infty$$

Symmetrie:

keine

Graph:

1 von 2 08.12.2015 20:50

Wichtig: Alle Angaben ohne Gewähr! Keine Haftung für fehlerhafte Resultate! Erstellt mit der automatischen Funktionsuntersuchung von www.Mathe-Paradies.de

2 von 2 08.12.2015 20:50